Sunday, September 6, 2015

Hey Linux Power Management !!! Demystified

Linux Power Management!!! in due to follow specific use cases to Discuss

Source Framework::
  • kernel/power/ *
  • drivers/power/
  • drivers/base/power/*
  • drivers/cpuidle/*
  • drivers/cpufreq/* <<<<<<------1st 2.6.11="" 2006="" addition="" in="" li="" nbsp="" place="">
  • drivers/devfreq/*
  • include/linux/power_supply.h
  • include/linux/cpuidle.h
  • include/linux/cpufreq.h
  • include/linux/cpu_pm.h
  • include/linux/device.h
  • include/linux/pm.h
  • include/linux/pm domain.h
  • include/linux/pm runtime.h
  • include/linux/pm wakeup.h
  • include/linux/suspend.h
  • Documentation/power/*.txt
#define container_of(ptr, type, member) (type *)((char *)ptr - (char *)&((type *)0)->member)

最后将程序改为

1 #include
2 #include
3 #include
4
5 #define container_of(ptr, type, member) (type *)((char *)ptr - (char *)&((type *)0)->member)
6
7 typedef struct {
    int a;
    int b;
10     int c;
11 }hehe;
12
13 int main(int argc, char *argv[])
14 {
15     hehe hoho;
16     hehe *haha;
17     hehe *hihi;
18     int *ptr;
19
20     hoho.a = 1;
21     hoho.b = 2;
22     hoho.c = 3;
23
24     hihi = &hoho;
25
26     ptr = &hoho.b;
27
28     printf("ptr = %d, hihi = 0xx\n", *ptr, hihi);
29
30     haha = container_of(ptr, hehe, b);
31     printf("a = %d, b = %d, c = %d \n", haha->a, haha->b, haha->c);
32 }
33

编译后运行:
$ ./2
ptr = 2, hihi = 0xbfe14b5c
a = 1, b = 2, c = 3
Major 3 layers ::
API Layer :: used to provide User space, which used to shutdown, restart, hibernate, suspend using sysfs .
PM Core   ::  Major modifications as on kernel ref: source code framework.
PM driver :: Again 2 Layers Architecture dependent and Specific Driver Framework.

Main stream linux kernel shutdown and restart system calls.
Ahhh!!! After shutdown, sooner or later will boot , so restart shutdown is a special process.

/*
 * Reboot system call: for obvious reasons only root may call it,
 * and even root needs to set up some magic numbers in the registers
 * so that some mistake won't make this reboot the whole machine.
 * You can also set the meaning of the ctrl-alt-del-key here.
 *
 * reboot doesn't sync: do that yourself before calling this.
 */
SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
void __user *, arg)


/**
* struct dev_pm_ops - device PM callbacks
*
* Several device power state transitions are externally visible, affecting
* the state of pending I/O queues and (for drivers that touch hardware)
* interrupts, wakeups, DMA, and other hardware state. There may also be
* internal transitions to various low-power modes which are transparent
* to the rest of the driver stack (such as a driver that's ON gating off
* clocks which are not in active use).
*
* The externally visible transitions are handled with the help of callbacks
* included in this structure in such a way that two levels of callbacks are
* involved. First, the PM core executes callbacks provided by PM domains,
* device types, classes and bus types. They are the subsystem-level callbacks
* supposed to execute callbacks provided by device drivers, although they may
* choose not to do that. If the driver callbacks are executed, they have to
* collaborate with the subsystem-level callbacks to achieve the goals
* appropriate for the given system transition, given transition phase and the
* subsystem the device belongs to.
*
* @prepare: The principal role of this callback is to prevent new children of
* the device from being registered after it has returned (the driver's
* subsystem and generally the rest of the kernel is supposed to prevent
* new calls to the probe method from being made too once @prepare() has
* succeeded). If @prepare() detects a situation it cannot handle (e.g.
* registration of a child already in progress), it may return -EAGAIN, so
* that the PM core can execute it once again (e.g. after a new child has
* been registered) to recover from the race condition.
* This method is executed for all kinds of suspend transitions and is
* followed by one of the suspend callbacks: @suspend(), @freeze(), or
* @poweroff(). If the transition is a suspend to memory or standby (that
* is, not related to hibernation), the return value of @prepare() may be
* used to indicate to the PM core to leave the device in runtime suspend
* if applicable. Namely, if @prepare() returns a positive number, the PM
* core will understand that as a declaration that the device appears to be
* runtime-suspended and it may be left in that state during the entire
* transition and during the subsequent resume if all of its descendants
* are left in runtime suspend too. If that happens, @complete() will be
* executed directly after @prepare() and it must ensure the proper
* functioning of the device after the system resume.
* The PM core executes subsystem-level @prepare() for all devices before
* starting to invoke suspend callbacks for any of them, so generally
* devices may be assumed to be functional or to respond to runtime resume
* requests while @prepare() is being executed. However, device drivers
* may NOT assume anything about the availability of user space at that
* time and it is NOT valid to request firmware from within @prepare()
* (it's too late to do that). It also is NOT valid to allocate
* substantial amounts of memory from @prepare() in the GFP_KERNEL mode.
* [To work around these limitations, drivers may register suspend and
* hibernation notifiers to be executed before the freezing of tasks.]
*
* @complete: Undo the changes made by @prepare(). This method is executed for
* all kinds of resume transitions, following one of the resume callbacks:
* @resume(), @thaw(), @restore(). Also called if the state transition
* fails before the driver's suspend callback: @suspend(), @freeze() or
* @poweroff(), can be executed (e.g. if the suspend callback fails for one
* of the other devices that the PM core has unsuccessfully attempted to
* suspend earlier).
* The PM core executes subsystem-level @complete() after it has executed
* the appropriate resume callbacks for all devices. If the corresponding
* @prepare() at the beginning of the suspend transition returned a
* positive number and the device was left in runtime suspend (without
* executing any suspend and resume callbacks for it), @complete() will be
* the only callback executed for the device during resume. In that case,
* @complete() must be prepared to do whatever is necessary to ensure the
* proper functioning of the device after the system resume. To this end,
* @complete() can check the power.direct_complete flag of the device to
* learn whether (unset) or not (set) the previous suspend and resume
* callbacks have been executed for it.
*
* @suspend: Executed before putting the system into a sleep state in which the
* contents of main memory are preserved. The exact action to perform
* depends on the device's subsystem (PM domain, device type, class or bus
* type), but generally the device must be quiescent after subsystem-level
* @suspend() has returned, so that it doesn't do any I/O or DMA.
* Subsystem-level @suspend() is executed for all devices after invoking
* subsystem-level @prepare() for all of them.
*
* @suspend_late: Continue operations started by @suspend(). For a number of
* devices @suspend_late() may point to the same callback routine as the
* runtime suspend callback.
*
* @resume: Executed after waking the system up from a sleep state in which the
* contents of main memory were preserved. The exact action to perform
* depends on the device's subsystem, but generally the driver is expected
* to start working again, responding to hardware events and software
* requests (the device itself may be left in a low-power state, waiting
* for a runtime resume to occur). The state of the device at the time its
* driver's @resume() callback is run depends on the platform and subsystem
* the device belongs to. On most platforms, there are no restrictions on
* availability of resources like clocks during @resume().
* Subsystem-level @resume() is executed for all devices after invoking
* subsystem-level @resume_noirq() for all of them.
*
* @resume_early: Prepare to execute @resume(). For a number of devices
* @resume_early() may point to the same callback routine as the runtime
* resume callback.
*
* @freeze: Hibernation-specific, executed before creating a hibernation image.
* Analogous to @suspend(), but it should not enable the device to signal
* wakeup events or change its power state. The majority of subsystems
* (with the notable exception of the PCI bus type) expect the driver-level
* @freeze() to save the device settings in memory to be used by @restore()
* during the subsequent resume from hibernation.
* Subsystem-level @freeze() is executed for all devices after invoking
* subsystem-level @prepare() for all of them.
*
* @freeze_late: Continue operations started by @freeze(). Analogous to
* @suspend_late(), but it should not enable the device to signal wakeup
* events or change its power state.
*
* @thaw: Hibernation-specific, executed after creating a hibernation image OR
* if the creation of an image has failed. Also executed after a failing
* attempt to restore the contents of main memory from such an image.
* Undo the changes made by the preceding @freeze(), so the device can be
* operated in the same way as immediately before the call to @freeze().
* Subsystem-level @thaw() is executed for all devices after invoking
* subsystem-level @thaw_noirq() for all of them. It also may be executed
* directly after @freeze() in case of a transition error.
*
* @thaw_early: Prepare to execute @thaw(). Undo the changes made by the
* preceding @freeze_late().
*
* @poweroff: Hibernation-specific, executed after saving a hibernation image.
* Analogous to @suspend(), but it need not save the device's settings in
* memory.
* Subsystem-level @poweroff() is executed for all devices after invoking
* subsystem-level @prepare() for all of them.
*
* @poweroff_late: Continue operations started by @poweroff(). Analogous to
* @suspend_late(), but it need not save the device's settings in memory.
*
* @restore: Hibernation-specific, executed after restoring the contents of main
* memory from a hibernation image, analogous to @resume().
*
* @restore_early: Prepare to execute @restore(), analogous to @resume_early().
*
* @suspend_noirq: Complete the actions started by @suspend(). Carry out any
* additional operations required for suspending the device that might be
* racing with its driver's interrupt handler, which is guaranteed not to
* run while @suspend_noirq() is being executed.
* It generally is expected that the device will be in a low-power state
* (appropriate for the target system sleep state) after subsystem-level
* @suspend_noirq() has returned successfully. If the device can generate
* system wakeup signals and is enabled to wake up the system, it should be
* configured to do so at that time. However, depending on the platform
* and device's subsystem, @suspend() or @suspend_late() may be allowed to
* put the device into the low-power state and configure it to generate
* wakeup signals, in which case it generally is not necessary to define
* @suspend_noirq().
*
* @resume_noirq: Prepare for the execution of @resume() by carrying out any
* operations required for resuming the device that might be racing with
* its driver's interrupt handler, which is guaranteed not to run while
* @resume_noirq() is being executed.
*
* @freeze_noirq: Complete the actions started by @freeze(). Carry out any
* additional operations required for freezing the device that might be
* racing with its driver's interrupt handler, which is guaranteed not to
* run while @freeze_noirq() is being executed.
* The power state of the device should not be changed by either @freeze(),
* or @freeze_late(), or @freeze_noirq() and it should not be configured to
* signal system wakeup by any of these callbacks.
*
* @thaw_noirq: Prepare for the execution of @thaw() by carrying out any
* operations required for thawing the device that might be racing with its
* driver's interrupt handler, which is guaranteed not to run while
* @thaw_noirq() is being executed.
*
* @poweroff_noirq: Complete the actions started by @poweroff(). Analogous to
* @suspend_noirq(), but it need not save the device's settings in memory.
*
* @restore_noirq: Prepare for the execution of @restore() by carrying out any
* operations required for thawing the device that might be racing with its
* driver's interrupt handler, which is guaranteed not to run while
* @restore_noirq() is being executed. Analogous to @resume_noirq().
*
* All of the above callbacks, except for @complete(), return error codes.
* However, the error codes returned by the resume operations, @resume(),
* @thaw(), @restore(), @resume_noirq(), @thaw_noirq(), and @restore_noirq(), do
* not cause the PM core to abort the resume transition during which they are
* returned. The error codes returned in those cases are only printed by the PM
* core to the system logs for debugging purposes. Still, it is recommended
* that drivers only return error codes from their resume methods in case of an
* unrecoverable failure (i.e. when the device being handled refuses to resume
* and becomes unusable) to allow us to modify the PM core in the future, so
* that it can avoid attempting to handle devices that failed to resume and
* their children.
*
* It is allowed to unregister devices while the above callbacks are being
* executed. However, a callback routine must NOT try to unregister the device
* it was called for, although it may unregister children of that device (for
* example, if it detects that a child was unplugged while the system was
* asleep).
*
* Refer to Documentation/power/devices.txt for more information about the role
* of the above callbacks in the system suspend process.
*
* There also are callbacks related to runtime power management of devices.
* Again, these callbacks are executed by the PM core only for subsystems
* (PM domains, device types, classes and bus types) and the subsystem-level
* callbacks are supposed to invoke the driver callbacks. Moreover, the exact
* actions to be performed by a device driver's callbacks generally depend on
* the platform and subsystem the device belongs to.
*
* @runtime_suspend: Prepare the device for a condition in which it won't be
* able to communicate with the CPU(s) and RAM due to power management.
* This need not mean that the device should be put into a low-power state.
* For example, if the device is behind a link which is about to be turned
* off, the device may remain at full power. If the device does go to low
* power and is capable of generating runtime wakeup events, remote wakeup
* (i.e., a hardware mechanism allowing the device to request a change of
* its power state via an interrupt) should be enabled for it.
*
* @runtime_resume: Put the device into the fully active state in response to a
* wakeup event generated by hardware or at the request of software. If
* necessary, put the device into the full-power state and restore its
* registers, so that it is fully operational.
*
* @runtime_idle: Device appears to be inactive and it might be put into a
* low-power state if all of the necessary conditions are satisfied.
* Check these conditions, and return 0 if it's appropriate to let the PM
* core queue a suspend request for the device.
*
* Refer to Documentation/power/runtime_pm.txt for more information about the
* role of the above callbacks in device runtime power management.
*
*/
struct dev_pm_ops {
int (*prepare)(struct device *dev);
void (*complete)(struct device *dev);
int (*suspend)(struct device *dev);
int (*resume)(struct device *dev);
int (*freeze)(struct device *dev);
int (*thaw)(struct device *dev);
int (*poweroff)(struct device *dev);
int (*restore)(struct device *dev);
int (*suspend_late)(struct device *dev);
int (*resume_early)(struct device *dev);
int (*freeze_late)(struct device *dev);
int (*thaw_early)(struct device *dev);
int (*poweroff_late)(struct device *dev);
int (*restore_early)(struct device *dev);
int (*suspend_noirq)(struct device *dev);
int (*resume_noirq)(struct device *dev);
int (*freeze_noirq)(struct device *dev);
int (*thaw_noirq)(struct device *dev);
int (*poweroff_noirq)(struct device *dev);
int (*restore_noirq)(struct device *dev);
int (*runtime_suspend)(struct device *dev);
int (*runtime_resume)(struct device *dev);
int (*runtime_idle)(struct device *dev);
};

No comments:

Post a Comment